6/(t^2)=2t^2+1

Simple and best practice solution for 6/(t^2)=2t^2+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6/(t^2)=2t^2+1 equation:


D( t )

t^2 = 0

t^2 = 0

t^2 = 0

1*t^2 = 0 // : 1

t^2 = 0

t = 0

t in (-oo:0) U (0:+oo)

6/(t^2) = 2*t^2+1 // - 2*t^2+1

6/(t^2)-(2*t^2)-1 = 0

6/(t^2)-2*t^2-1 = 0

6*t^-2-2*t^2-1 = 0

t_1 = t^2

6*t_1^-1-2*t_1^1-1 = 0

6*t_1^-1-2*t_1^1-1*t_1^0 = 0

(6*t_1^0-2*t_1^2-1*t_1^1)/(t_1^1) = 0 // * t_1^2

t_1^1*(6*t_1^0-2*t_1^2-1*t_1^1) = 0

t_1^1

6-2*t_1^2-t_1 = 0

6-2*t_1^2-t_1 = 0

DELTA = (-1)^2-(-2*4*6)

DELTA = 49

DELTA > 0

t_1 = (49^(1/2)+1)/(-2*2) or t_1 = (1-49^(1/2))/(-2*2)

t_1 = -2 or t_1 = 3/2

t_1 in { -2, 3/2}

t_1 = -2

t^2+2 = 0

1*t^2 = -2 // : 1

t^2 = -2

t_1 = 3/2

t^2-3/2 = 0

1*t^2 = 3/2 // : 1

t^2 = 3/2

t^2 = 3/2 // ^ 1/2

abs(t) = (3/2)^(1/2)

t = (3/2)^(1/2) or t = -(3/2)^(1/2)

t in { (3/2)^(1/2), -(3/2)^(1/2) }

See similar equations:

| -1/3y=5 | | 2x+5/x-3=6/7 | | 5n^2+17n-9=3 | | 7/x=8/120 | | y^3+8y^2=0 | | -2(7n-8)+2=-94 | | 2x+8=2(x+3)+2 | | 1/5y=-2 | | 216/4+3.9(33.8-18.4) | | 2x^2-x+7=8 | | 3/10y=31/3 | | 22x^2-16x= | | 9-2(4a+2)=21 | | 11.04+36(4.9-3.7)/3 | | 148=-5p+7(-8+8p) | | 15x^2+19x-10= | | 11.04+36(4.9-3.7)=3 | | -2x+1+x=3 | | .25(12x+36)-0.4(25x-30)=50 | | 10(v+4)-2v=2(4v+1)-3 | | (X^4)+(x^3)(-x)=1 | | 2(a+4)/2=12/2 | | 4r^2-13r+10=0 | | 34w-26-10w=166 | | 5u-2u+15=2u+14 | | 5x+2+1= | | 7m^2-32m-15=0 | | f(x)=-3x^2-2x+5 | | 1/3y=4 | | 9w-4=6w-9 | | 100m+674+70m=-380 | | 7n^2+54n+35=0 |

Equations solver categories